

Speicher

Trinkwasserspeicher TW 120, 155

Kurzbeschreibung

- Senkrecht stehender Speicher-Trinkwassererwärmer mit innenliegendem Glattrohrwärmetauscher mit Qualitätsemaillierung
- Mit obenliegenden und nebeinander angeordneten Speicheranschlüssen
- Speicher für die solare Warmwasserbereitung mit AquaSolar Systemen

Leistungsmerkmale

- Montagefreundlich nebeneinander angeordnete Anschlüsse, flachdichtende Außengewinde für den Wärmeerzeuger; im Gewinde dichtende Anschlüsse für Trinkwasser
- Korrosionsschutz durch Emaillierung und Magnesium-Opferanode oder Titanoxid-Fremdstromanode
- Revisionsflansch
- Wärmedämmung aus 70 mm PS-Hartschaum (nicht abnehmbar) mit PVC-Mantel
- Geringe Druckverluste trotz großer Wärmetauscheroberflächen
- Uneingeschränkte Einsatzmöglichkeit auch bei kalkhaltigem Wasser

Magnesiumanode

	TW 120	TW 155
Energieeffizienzklasse	С	С
Fremdstromanode		
	TW 120	TW 155

Energieeffizienzklasse	С	С

Lieferumfang

Speicherbehälter auf Palette befestigt, gegen Nässe geschützt

Hinweis

Lieferung auch mit CORREX-Fremdstromanode möglich

155

1,824

Trinkwassererwärmung

		TW 120	TW 155
Speichergewicht	kg	47	55
Druck, max.	bar	6	6
Betriebstemperatur, max.	°C	95	95
Speicherinhalt ohne Wärmetauscher	I	117	155
Warmhalteverlust (Sstby)	W	70	76
Volumen nonsol	1	85	111
Warmwasserbehälter			
		TW 120	TW 155
Druck, max.	bar	10	10
Betriebstemperatur, max.	°C	95	95
Gesamtfläche Wärmetauscher	m²	1,15	1,2
Inhalt Wärmetauscher	1	5,8	6,1
Druckverlust (Wasser, 20 l/min)	mbar	86	89
EnEV Kennwerte			
		TW 120	TW 155

Maße			
		TW 120	TW 155
Höhe mit Dämmung	mm	845	1.045
Breite mit Dämmung	mm	560	560
PS-Hartschaum-Dämmung	mm	70	70
Tiefe mit Dämmung	mm	575	575

117

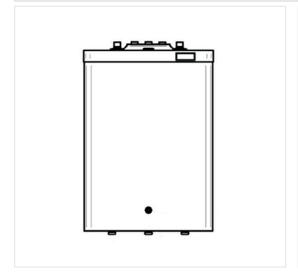
1,680

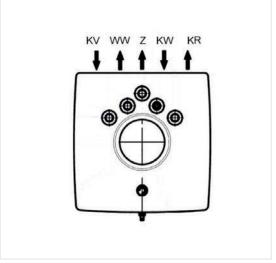
Anschlüsse	Anschlusshöhe		Anschlusshöhe	Anschlussart
		TW 120	TW 155	
Kaltwasser KW	mm	845	1.045	R 3/4"
Warmwasser WW	mm	845	1.045	R 3/4"
Kesselvorlauf KV	mm	845	1.045	G 3/4"
Zirkulation Z	mm	845	1.045	R 3/4"
Kesselrücklauf KR	mm	845	1.045	G 3/4"

Technische Daten

Speicher-Nenninhalt V

Solarvolumen VS_{sol}


Bereitschaftswärmeverlust $q_{B.S}$


Bereitschaftsvolumen VS_{aux}

kWh/d

Maße

TW 120, 155

Leistungsdaten

	TW 120	TW 155
Leistung bei 50 °C Speichertemperatur Zapfmenge / Zapfrate / NL-Zahl	176 l / 16 l/min / 1,2	195 l / 20 l/min / 1,9
Leistung bei 60 °C Speichertemperatur Zapfmenge / Zapfrate / NL-Zahl	191 l / 17 l/min / 1,4	215 l / 22 l/min / 2,3
Leistung bei 70 °C Speichertemperatur Zapfmenge / Zapfrate / NL-Zahl	206 l / 19 l/min / 1,7	235 / 24 /min / 2,7

Die Leistungsangaben gelten für folgende Bedingungen:

Zapftemperatur 45 °C, Kaltwassertemperatur 10 °C, Kesselleistung 15 kW, modulierender Paradigma Gasbrennwertkessel. Bei Zapfbeginn durchgeladener Speicher.

Einbauhinweise

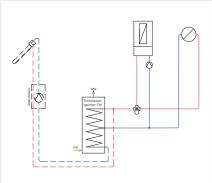
Technische Hinweise

- Die Trinkwasserinstallation hat mit Sicherheitsventil nach DIN 1988 zu erfolgen.
- Die Speicher sind emailliert und deshalb vor harten Schlägen zu bewahren.
- Der Wärmetauscher hat primärseitig keinen Korrosionsschutz. Primärseitige Korrosion ist von der Gewährleistung ausgeschlossen

Wartungspflichtiger Korrosionsschutz durch Magnesium-Opferanode

 Die Überprüfung der Mg-Anode nach DIN 4753 durch Ausbau und Sichtkontrolle, erstmals nach spätestens 2 Jahren und fortan jährlich, ist eine Gewährleistungsvoraussetzung

Auslegung


Für die Größe der Kollektorfläche sind 60 l/m² +/- 25 % des Speichervolumens zu Grunde zu legen. Mindestens jedoch 40 l/m² Kollektorfläche Sinnvolle Kollektorflächen sind somit

- TW 120 mit 2 3 m²
- TW 155 mit 2 4 m²

Trinkwasserspeicher TW 200 bis 500

Kurzbeschreibung

- · Senkrecht stehender Speicher-Trinkwassererwärmer mit zwei innenliegenden Glattrohrwärmetauschern mit Qualitätsemaillierung
- Speicher für die solare Warmwasserbereitung mit AquaSolar Systemen

Leistungsmerkmale

- PU-Hartschaumdämmung (nicht abnehmbar) Klasse B nach ErP-Richtlinie
- Gut geeignet für Kessel mit Gasbrennwert-Technik
- Uneingeschränkte Einsatzmöglichkeit auch bei kalkhaltigem Wasser
- Höhenverstellbare Füße minimieren die Wärmeverluste über den Bodenkontakt
- · Korrosionsschutz durch Emaillierung und Magnesium-Opferanode oder Titanoxid-Fremdstromanode
- Revisionsflansch

Magnesiumanode

	TW 200	TW 300	TW 400	TW 500
Energieeffizienzklasse	В	В	В	В

Fremdstromanode

	TW 200	TW 300	TW 400	TW 500
Energieeffizienzklasse	В	В	В	В

Lieferumfang

Speicherbehälter auf Palette befestigt, gegen Nässe geschützt • Bodenabstandshalter

Hinweis

Lieferung auch mit CORREX-Fremdstromanode möglich

Technische Daten					
		TW 200	TW 300	TW 400	TW 500
Speichergewicht	kg	86	117	144	181
Druck, max.	bar	10	10	10	10
Betriebstemperatur, max.	°C	99	99	99	99
Speicherinhalt	1	200	280	403	470
Kesselnachheizvolumen Vn	1	69	120	169	215
Nachheizvolumen bei E-Heizung	1	85	140	218	244
Volumen nonsol	1	69	119	163	214
Warmhalteverlust (Sstby)	W	57	64	71	76
Warmwasserbehälter					
		TW 200	TW 300	TW 400	TW 500
Druck, max.	bar	10	10	10	10
Betriebstemperatur, max.	°C	110	110	110	110
Gesamtfläche Wärmetauscher	m²	1,5	2,2	2,4	2,7
Inhalt Wärmetauscher	1	9	13,5	14,5	17
Fläche oberer Wärmetauscher	m²	0,6	0,9	1,1	1,1
Inhalt oberer Wärmetauscher	1	3,5	5,5	6,5	6,5
Druckverlust (Wasser, 20 l/min) oberer Wärmetauscher	mbar	13	20	24	24
EnEV Kennwerte					
		TW 200	TW 300	TW 400	TW 500
Speicher-Nenninhalt V	1	200	280	403	470
Bereitschaftswärmeverlust q _{B,S}	kWh/d	1,368	1,536	1,704	1,824
Bereitschaftsvolumen VS _{aux}	1	85	140	218	244
Solarvolumen VS _{sol}	I	115	140	185	226
Maße					
		TW 200	TW 300	TW 400	TW 500
Höhe mit Dämmung	mm	1.254	1.670	1.670	1.910
Kippmaß	mm	1.420	1.796	1.835	2.055

Notwendige lichte Breite zum

Durchmesser mit Dämmung

PU-Hartschaum-Dämmung

Transport

mm

mm

mm

670

660

80

770

760

80

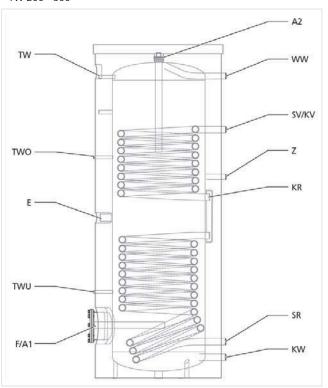
670

660

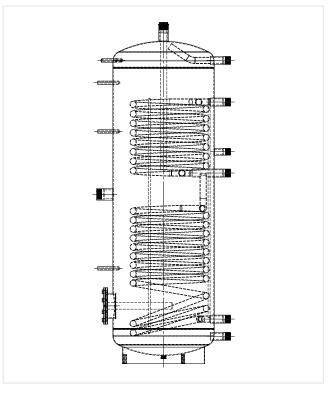
80

770

760


80

Anschlüsse		Anschlusshöhe	Anschlusshöhe	Anschlusshöhe	Anschlusshöhe	Anschlussart
		TW 200	TW 300	TW 400	TW 500	
Kaltwasser KW	mm	135	135	150	150	Rp 1"
Warmwasser WW	mm	1.079	1.495	1.480	1.720	Rp 1"
Zeigerthermometer T	mm	1.015	1.385	1.325	1.660	Tauchhülse
Kesselvorlauf KV	mm	990	1.290	1.270	1.325	Rp 1"
Zirkulation Z	mm	880	1.045	1.065	1.125	Rp 3/4"
Kesselrücklauf KR	mm	780	940	965	1.020	Rp 1"
Elektrischer Heizstab Muffe E	mm	700	835	770	920	IG 1 1/2"
Flansch mit Anode A1	mm	285	285	300	300	180-120, 8x M12
Solarvorlauf SV	mm	990	1.290	1.270	1.325	Rp 1"
Solarrücklauf SR	mm	220	220	235	235	Rp 1"
Anodenmuffe A2	mm	1.254	1.670	1.670	1.910	1 ¼" IG el. isoliert


Fühler		Fühler- Anschlusshöhe	Fühler- Anschlusshöhe	Fühler- Anschlusshöhe	Fühler- Anschlusshöhe	Fühler- Anschlussart
		TW 200	TW 300	TW 400	TW 500	
Warmwasserfühler TW	mm	1.099	1.564	1.500	1.614	Tauchhülse
Warmwasserfühler TWO	mm	930	1.145	1.165	1.225	Tauchhülse
Solarfühler unten TWU	mm	470	470	470	470	Tauchhülse

Maße

TW 200 - 500

Leistungsdaten

	TW 200	TW 300	TW 400	TW 500
Leistung bei 50 °C Speichertemperatur Zapfmenge / Zapfrate / NL-Zahl	248 / 20 /min / 1,9	323 / 26 /min / 3,2	445 l / 35 l/min / 6,0	507 I / 40 I/min / 1,7
Leistung bei 60 °C Speichertemperatur Zapfmenge / Zapfrate / NL-Zahl	273 / 22 /min / 2,3	358 l / 28 l/min / 3,9	496 l / 39 l/min / 7,4	566 I / 44 I/min / 9,6
Leistung bei 70 °C Speichertemperatur Zapfmenge / Zapfrate / NL-Zahl	299 l / 24 l/min / 2,8	393 I / 31 l/min / 4,7	546 l / 43 l/min / 9,0	625 / 49 /min / 11,6

Die Leistungsangaben gelten für folgende Bedingungen:

Zapftemperatur 45 °C, Kaltwassertemperatur 10 °C, Kesselleistung 15 kW, modulierender Paradigma Gasbrennwertkessel. Bei Zapfbeginn durchgeladener Speicher.

Einbauhinweise

Elektro-Nachheizung

Für den Fall, dass eine Stromheizung notwendig ist, steht eine 1 1/2" Muffe zum Einbau eines elektrischen Heizstabs zur Verfügung. Es dürfen generell nur für den Einsatz in emaillierten Speicher-Trinkwassererwämern geeignete Elektroheizstäbe mit einer unbeheizten Länge von 100 mm verwendet werden, sonst erlischt die Gewährleistung für den Korrosionsschutz.

Technische Hinweise

- · Da im Solarbetrieb sehr hohe Speichertemperaturen auftreten können, wird der Einbau eines Warmwasser-Mischautomaten empfohlen
- Die Speicher sind innen emailliert und deshalb vor harten Schlägen zu bewahren
- Alle Anschlüsse sollten oberhalb des Solarrücklaufes ca. 300 mm nach unten verrohrt werden, um Wärmeverluste der Anschlüsse so gering wie möglich zu halten. Der Vorlauf des Wärmetauschers muss mit einem Entlüfter ausgestattet werden
- Besonders der Einbau des Speichers in einer Dachheizzentrale erfordert den Unterbau einer Leckagewanne mit Abfluss, weil Versicherungsgesellschaften die Regulierung von Wasserschäden (z. B. wegen defektem Sicherheitsventil) sonst ablehnen könnten

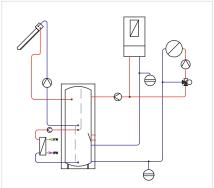
Korrosionsschutz durch Fremdstromanode

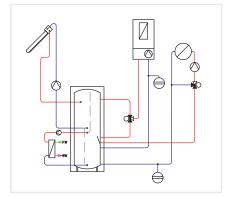
- Das Anschlusskabel der Fremdstromanode muss an das mitgelieferte Netzteil gesteckt und dieses muss ständig mit Netzstrom versorgt werden (Leistungsaufnahme max. 2 W). Als Funktionskontrolle dient die grüne Leuchtdiode am Netzteil
- In regelmäßigen Abständen ist zu prüfen, ob die grüne Leuchtdiode noch leuchtet
- Die Wärmetauscher haben primärseitig keinen Korrosionsschutz. Primärseitige Korrosion ist von der Gewährleistung ausgeschlossen

Wartungspflichtiger Korrosionsschutz durch Magnesium-Opferanode

 Die Überprüfung der Mg-Anode nach DIN 4753 durch Ausbau und Sichtkontrolle, erstmals nach spätestens 2 Jahren und fortan jährlich, ist eine Gewährleistungsvoraussetzung

Auslegung


Für die Größe der Kollektorfläche sind 60 l/m² +/- 25 % des Speichervolumens zu Grunde zu legen. Mindesten jedoch 40 l/m² Kollektorfläche Sinnvolle Kollektorflächen sind somit


- TW 200 mit 3 5 m²
- TW 300 mit 4 7 m²
- TW 400 mit 5 10 m²
- TW 500 mit 6 13 m²

Frischwasserspeicher EXPRESSINO

Kurzbeschreibung

- · Kompaktspeicher für Anwendungen mit begrenztem Platzangebot
- Zur Speicherung von Wärme für Trinkwarmwasser und Heizung
- Trinkwarmwasserbereitung mit Frischwasserstation
- Vorbereitet f
 ür Einsatz in AquaSolar Systemen

Leistungsmerkmale

- Ideal für die Verwendung in Dachheizzentralen
- Moderates Speichervolumen von 286 l
- Geringe Einbring- und Aufstellmaße
- Geringes Leergewicht

- · Einsetzbar als hydraulische Weiche
- · Montage von Solar- und Frischwasserstation direkt am Speicher
- · PU-Hartschaumdämmung, nicht abnehmbar
- Warmwasserspitzenzapfleistung von bis zu 25 l/min.

EXPRESSINO 300			Neu
	EXPRESSINO 300 mit Solarstation STAqua mono	EXPRESSINO 300 ohne Solarstation	EXPRESSINO 300 für Kaskadierung inkl. Zubehör
Energieeffizienzklasse	В	В	В
1:			

Lieferumfang

Speicher auf Palette geschraubt, gegen Nässe geschützt • Solarstation STAqua mono (optional) separat im Karton • Frischwasserstation FST-25 (optional) separat im Karton • Entlüfter

Einsatz- und Funktionsbeschreibung

Der Kompaktspeicher EXPRESSINO 300 ist ein kleiner Heizungspufferspeicher mit am Behälter befestigter Frischwasserstation zur Trinkwarmwasserbereitung. Die gleichfalls am Behälter befestigte Solarstation STAqua mono (optional) ermöglicht den direkten Anschluss eines AquaSolar Systems bis maximal 7 m² Bruttokollektorfläche. Der EXPRESSINO 300 ist ideal geeignet für alle Anwendungen mit begrenztem Platzangebot. Durch seine schmale Bauform kann er selbst durch schmale Dachluken eingebracht und in Dachheizzentralen eingesetzt werden.

Die thermostatisch geregelte Frischwasserstation FST-25 garantiert eine stets hygienische und komfortable Bereitstellung von Trinkwarmwasser. Die bewährte Solarstation STAqua mono (optional) ermöglicht die Nutzung von regenerativer Solarwärme zur Trinkwarmwasserbereitung und bedingt auch zur Raumheizung.

Mit Hilfe eines zusätzlichen EXPRESSINO 300 für Kaskadierung (ohne Solar- und ohne Frischwasserstation) ist eine Verdopplung des Speichervolumens möglich. So können auch bei beengten Platzverhältnissen AquaSolar Systeme zum teilsolaren Heizen realisiert und im Rahmen des Marktanreizprogramms (MAP) gefördert werden.


Zubehör

3-Wege-ULV-Set EXPRESSINO

Zur Umschaltung des Wärmeerzeugervorlaufs von Heizung auf Warmwasserbereitung für eine effektive Brennwertnutzung. Komplett vormontierte Baugruppe zur direkten Montage am EXPRESSINO 300.

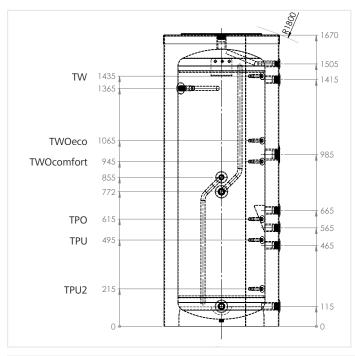
 $\textbf{Lieferumfang:} \ \mathsf{Dreiwege\text{-}Umlenkventil} \ \bullet \ \mathsf{Verrohrung} \ \bullet \ \mathsf{notwendige} \ \mathsf{Montageteile}$

PL-2224 V1.0 07/2019 Preisliste 2019/2020

© by Ritter Energie- und Umwelttechnik GmbH & Co. KG, Dettenhausen. Technische Änderungen vorbehalten.

Technische Daten		
		EXPRESSINO 300
Speichergewicht	kg	83
Speichergewicht inkl. Stationen	kg	104
Druck, max.	bar	3
Druck, max. Frischwasserstation	bar	10
Betriebstemperatur, max.	°C	95
Speicherinhalt	1	286
Bereitschaftsvolumen Solar	- 1	70
Kesselnachheizvolumen Vn	1	117
Nachheizvolumen bei E-Heizung	- 1	110
Warmhalteverlust (Sstby)	W	66
EnEV Kennwerte		
		EXPRESSINO 300
Speicher-Nenninhalt V	- 1	286
Bereitschaftswärmeverlust q _{B,S}	kWh/d	1,580
Bereitschaftsvolumen VS _{aux}	- 1	99
Solarvolumen VS _{sol}	I	187
Maße		
		EXPRESSINO 300
Notwendige Montagehöhe	mm	1.770
Höhe mit Dämmung	mm	1.720
Kippmaß	mm	1.800
Notwendige lichte Breite zum Transport	mm	690
Durchmesser mit Dämmung	mm	660

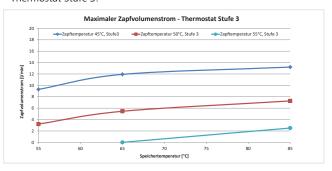
Anschlüsse			
Anschluss		EXPRESSINO 300	Anschlussart
Entlüfter ET	mm	1.505	Rp 1/2"
Kessel-Vorlauf KV WW	mm	1.415	Rp 1"
Kessel-Vorlauf KV H	mm	665	Rp 1"
Elektrischer Heizstab Muffe E	mm	985	Rp 1 ½"
Heizungsvorlauf HKV	mm	565	Rp 1"
Kessel-Rücklauf KR	mm	465	Rp 1"
Heizungsrücklauf HKR	mm	115	Rp 1"


80

PU-Hartschaum-Dämmung

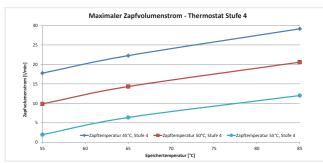
mm

Fühleranschlusshöhe			
Fühler		EXPRESSINO 300	Fühleranschlussart
Warmwasserfühler TW	mm	1.435	Tauchhülse
Warmwasserfühler TWOeco	mm	1.065	Tauchhülse
Warmwasserfühler TWOcomfort	mm	945	Tauchhülse
Pufferfühler oben TPO	mm	615	Tauchhülse
Pufferfühler unten TPU	mm	495	Tauchhülse
Pufferfühler 2 unten TPU2	mm	215	Tauchhülse


Einbauhinweise

- Die Anschlussbelegung ergibt sich aus der Hydraulik der Anlage
- Die Fühlerbelegung ist sinnvoll dem Anlageschema anzupassen
- Wärmeerzeuger und Wärmeverbraucher sind an unterschiedlichen Anschlüssen anzuschließen
- Maximal zwei Wärmeerzeuger oder Verbraucher mit einem Anschluss verbinden
- Die Verbindung erst unmittelbar am Speicheranschluss realisieren
- · Bei Einsatz eines elektrischen Heizstabes muss darauf geachtet werden, dass dieser eine unbeheizte Länge von 100 mm hat
- Der Einbau des Speichers in einer Dachheizzentrale erfordert den Unterbau einer Leckagewanne mit Abfluss, weil Versicherungsgesellschaften die Regulierung von Wasserschäden (z. B. wegen defektem Sicherheitsventil) sonst ablehnen könnten

Kennlinien


Maximaler Zapfvolumenstrom in Abhängigkeit der Speicher- und Warmwasserzapftemperatur bei Kaltwassertemperatur 10 °C und Thermostat Stufe 3:

Die Thermostat Stufe 3 sollte immer dann gewählt werden, wenn geringe Zapftemperaturen (45 °C) und Zapfvolumenströme (12 l/min) ausreichen. Aufgrund der geringeren Rücklauftemperaturen zum Speicher bietet sie energetische Vorteile und eine höhere Effizienz im Vergleich zu Stufe 4.

Innerhalb des Hauptarbeitsbereichs zwischen 10 und 20 l/min muss ausgehend von 15 l/min mit einer Temperaturabweichung um etwa 4 K bei einer Änderung des Volumenstroms um 5 l/min gerechnet werden.

Maximaler Zapfvolumenstrom in Abhängigkeit der Speicher- und Warmwasserzapftemperatur bei Kaltwassertemperatur 10 °C und Thermostat Stufe 4:

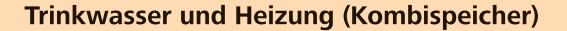
Die Thermostat Stufe 4 sollte immer dann gewählt werden, wenn höhere Zapftemperaturen (> $50\,^{\circ}$ C) und/oder Zapfvolumenströme (> $15\,^{\circ}$ I/min) erforderlich sind, die mit Stufe 3 nicht erreicht werden können.

Innerhalb des Hauptarbeitsbereichs zwischen 10 und 20 l/min muss ausgehend von 15 l/min mit einer Temperaturabweichung um etwa 3 K bei einer Änderung des Volumenstroms um 5 l/min gerechnet werden.

Auslegung

Die Auslegung der Speicher erfolgt nach der Kollektorfläche und den Leistungsdaten. Für die Größe der Kollektorfläche sind 80 l/m² +/- 25 % des Speichervolumens anzustreben. Sinnvolle Kollektorbruttoflächen für einen EXPRESSINO 300 sind somit etwa 3 bis 5 m². Maximal dürfen bis zu 7 m² installiert werden. Im Rahmen einer Kaskadierung von zwei Speichern sind Kollektorbruttoflächen bis zu 10 m² möglich.

Trinkwassergualität

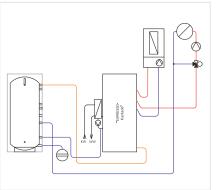

Um Korrosionsschäden am Plattenwärmetauscher zu vermeiden, sind folgende Werte des Trinkwassers zu beachten:

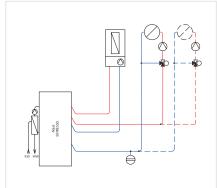
	Einheit	Kupferlot
Chlorid (CL')	mg/l	< 250 bei 50°C < 100 bei 75°C < 10 bei 90°C
Sulfat (SO ₄ ²⁻)	mg/l	< 100
Nitrat (NO ₃ -)	mg/l	< 100
pH-Wert		7,5 - 9,0
Elektrische Leitfähigkeit (bei 25 °C)	μS/cm	10 - 500
Hydrogencarbonat (HCO ₃ -)	mg/l	70 - 300
Verhältnis HCO ₃ -/SO ₄ ²⁻		Verhältnis > 1,0
Ammoniak (NH ₄ +)	mg/l	< 2
Freies Chlorgas	mg/l	< 0,5
Sulfit	mg/l	<1
Schwefelwasserstoff (H ₂ S)	mg/l	< 0,05
Freie (aggressive) Kohlensäure (CO ₂)	mg/l	< 5
Eisen (Fe)	mg/l	< 0,2
Ammonium	mg/l	< 2
Mangan (Mn)	mg/l	< 0,05
Gesamthärte	°dH	4 - 14 (Verhältnis [Ca,Mg]/[HCO3]<0,5)
Gesamter organischer Kohlenstoff (TOC)	mg/l	< 30

PL-2224 V1.0 07/2019 Preisliste 2019/2020

© by Ritter Energie- und Umwelttechnik GmbH & Co. KG, Dettenhausen. Technische Änderungen vorbehalten.

Hinweis


Wenn die örtlichen Bedingungen die geforderte Trinkwasserqualität nicht erfüllen, können Sie einen Plattenwärmetauscher mit Edelstahllot bestellen.


Calcium carbonat-Massenkonzentration			Maßnahme	
mmol/l	mg/l	°dH	wasiaiiie	
			Zapftemperatur ca. 60 °C	
< 1,5	< 150	< 8,4	Keine Enthärtungsanlage notwendig	
> 2,5	> 250	> 14	Enthärtungsanlage erforderlich	

Frischwasserspeicher Aqua EXPRESSO III

Kurzbeschreibung

- · Heizungspufferspeicher zur Speicherung von Wärme für Heizkreise und Trinkwarmwasser
- Trinkwarmwasserbereitung in Frischwasserstation

Nutzen und Vorteile

- · Hoher Warmwasserkomfort und beachtliche Warmwasserspitzenzapfleistung
- Geringe Wärmeverluste durch Wärmedämmung aus PU-Hartschaumschalen, Energieeffizeinzklasse B
- Hygienisch erwärmtes Frischwasser durch Durchlaufprinzip
- Sofortige Verfügbarkeit des Warmwassers
- · Hohe Warmwasser-Spitzenzapfleistung

Leistungsmerkmale

- Warmwasser-Spitzenzapfleistung bis 35 l/min
- Stabile Warmwasserzapftemperatur
- Schichtladeeinrichtung für Kessel/Solarvorlauf
- Wärmedämmung aus PU-Hartschaumschalen
- Höhenverstellbare Füße minimieren die Wärmeverluste über den Bodenkontakt
- Siphonierte Anschlüsse verringern Rohrnetz-Verluste
- · Vergrößerung des Puffervolumens durch Reihenschaltung mit einem Pufferspeicher über Erweiterungsset möglich

Anschlüsse rechts

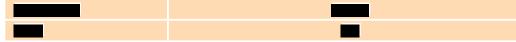
	Aqua EXPRESSO III 500	Aqua EXPRESSO III 650	Aqua EXPRESSO III 800	Aqua EXPRESSO III 1000
Energieeffizienzklasse	В	В	В	В

Anschlüsse links (Lieferzeit bis zu 4 Wochen)

	Aqua EXPRESSO III 500	Aqua EXPRESSO III 650	Aqua EXPRESSO III 800	Aqua EXPRESSO III 1000
Energieeffizienzklasse	В	В	В	В

Lieferumfang

Speicher auf Palette geschraubt, gegen Nässe geschützt • Dämmung montiert • Frischwasserstation separat im Karton • Bodenabstandshalter • Anschlussrosetten, Fühlerbefestigungen und Entlüfter im Beipack


Zubehör

Kaskadenset für Aqua Expresso III

Mit dem Kaskadenset ist es möglich, das Puffervolumen des Heizungssystems mit Aqua Expresso III durch Reihenschaltung mit einem Pufferspeicher zu vergrößern

Lieferumfang: gerader Kugelhahn 1" • Blindstopfen 1" • Dichtungen

Wasserqualität

Falls die Trinkwasserqualität den Einsatz eines Standardwärmetauschers mit Kupferlot nicht erlaubt, kann alternativ und gegen Aufpreis ein beschichteter Plattenwärmetauscher bestellt werden.

Einsatz- und Funktionsbeschreibung

Der Frischwasserspeicher Aqua EXPRESSO III eignet sich ideal zum Einsatz regenerativer Energien wie Sonnenenergie oder Holzverbrennungsenergie, weil die gespeicherte Energie zugleich zur Warmwasserbereitung und zur Heizung genutzt werden kann. Durch den integrierten Heizungspuffer wird die Zahl der Kesseleinschaltungen stark verringert, wodurch dieser besonders schonend und schadstoffarm betrieben werden kann. Die Frischwasserspeicher Aqua EXPRESSO III sind Heizungspufferspeicher mit an der Behälterdämmung befestigter Frischwasserstation zur Trinkwarmwasserbereitung. Sie repräsentieren absolutes Spitzen-Know-how hinsichtlich der Minimierung von Wärmeverlusten und erreichen durch die Schichtladeeinrichtungen für Kessel- und Solarvorlauf eine optimale Nutzung der eingebrachten Wärme. Die leistungsstarke Frischwasserstation ermöglicht einen hohen Trinkwarmwasserkomfort.

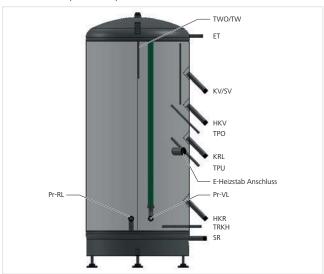
Technische Daten

		Aqua EXPRESSO III 500	Aqua EXPRESSO III 650	Aqua EXPRESSO III 800	Aqua EXPRESSO III 1000
Speichergewicht	kg	87	103	116	138
Druck, max.	bar	3	3	3	3
Druck, max. Frischwasserstation	bar	10	10	10	10
Betriebstemperatur, max.	°C	95	95	95	95
Speicherinhalt	1	500	636	815	1.047
Bereitschaftsvolumen Solar	1	198	312	400	557
Kesselnachheizvolumen Vn	1	76	95	121	140
Nachheizvolumen bei E-Heizung	1	407	426	550	658
Warmhalteverlust (Sstby)	W	82	90	98	107

EnEV Kennwerte

		Aqua EXPRESSO III 500	Aqua EXPRESSO III 650	Aqua EXPRESSO III 800	Aqua EXPRESSO III 1000
Speicher-Nenninhalt V	I	500	636	815	1047
Bereitschaftswärmeverlust q _{B,S}	kWh/d	1,968	2,160	2,352	2,568
Bereitschaftsvolumen VS _{aux}	1	226	229	294	350
Solarvolumen VS _{sol}	1	274	407	521	697

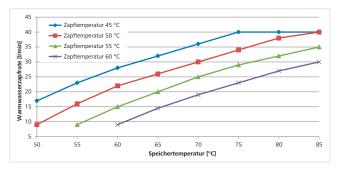
Maße					
		Aqua EXPRESSO III 500	Aqua EXPRESSO III 650	Aqua EXPRESSO III 800	Aqua EXPRESSO III 1000
Notwendige Montagehöhe	mm	1.670	2.020	2.040	2.230
Höhe mit Dämmung	mm	1.620	1.970	1.990	2.180
Höhe ohne Dämmung	mm	1.540	1.870	1.890	2.080
Kippmaß	mm	1.692	1.997	2.048	2.247
Notwendige lichte Breite zum Transport	mm	710	710	800	860
Durchmesser mit Dämmung	mm	900	900	990	1.050
Durchmesser ohne Dämmung	mm	700	700	790	850
PU-Hartschaum-Dämmung	mm	95	95	95	95
Standringdurchmesser	mm	700	700	790	850
Boden Standringunterkante	mm	90	90	90	90


Anschlüsse		Anschlusshöhe Anschlusshöhe		Anschlusshöhe Anschlusshöhe		Anschlussart
		Aqua EXPRESSO III 500	Aqua EXPRESSO III 650	Aqua EXPRESSO III 800	Aqua EXPRESSO III 1000	
Kesselvorlauf KV	mm	965	1.315	1.325	1.495	G 1"
Heizungsvorlauf HKV	mm	725	1.075	1.085	1.255	G 1"
Kesselrücklauf KR	mm	525	825	835	1.005	G 1"
Heizungsrücklauf HKR	mm	320	352	362	412	G 1"
Elektrischer Heizstab Muffe E	mm	570	870	880	1.050	1 ½" IG
Solarvorlauf SV	mm	965	1.315	1.325	1.495	G 1"
Solarrücklauf SR	mm	145	210	220	240	G 1"
Entlüfter ET	mm	1.310	1.740	1.750	1.920	½" IG

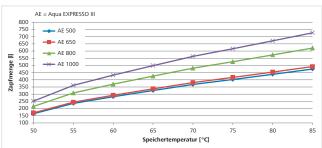
Fühler		Fühler- Anschlusshöhe	Fühler- Anschlusshöhe	Fühler- Anschlusshöhe	Fühler- Anschlusshöhe	Fühler- Anschlussart
		Aqua EXPRESSO III 500	Aqua EXPRESSO III 650	Aqua EXPRESSO III 800	Aqua EXPRESSO III 1000	
Warmwasserfühler TW	mm	1.540	1.890	1.910	2.100	Tauchhülse
Warmwasserfühler TWO	mm	1.540	1.890	1.910	2.100	Tauchhülse
Pufferfühler oben TPO	mm	601	951	961	1.131	Tauchhülse
Pufferfühler unten TPU	mm	401	701	711	881	Tauchhülse
Pufferfühler Holzkessel TRKH	mm	300	300	310	330	Tauchhülse

Anschlüsse und Fühler

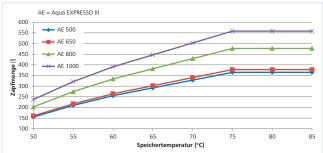
Frischwasserspeicher Aqua EXPRESSO III


Einbauhinweise

- Für den Einsatz von Wärmepumpen muss beachtet werden, dass die Temperatur von 60 65 °C, für welche die Leistungsdaten von Kombispeichern angegeben werden, von Wärmepumpen in der Regel nicht erreicht werden können
- Für den Einsatz von Wärmepumpen wird der Frischwasserspeicher Aqua EXPRESSO HF empfohlen
- Die Speicher sind nicht korrosionsgeschützt
- Bei Korrosionsschäden ist die Gewährleistung ausgeschlossen
- Auch kleinste Leckagen in der Heizungsanlage sind unbedingt zu beheben
- Die Verwendung von Rohren und dgl. aus Materialien, die nicht sauerstoffdicht sind, ist unzulässig
- Die Richtlinien der DIN 4751, der DIN 4753 und der DIN 1988 sind einzuhalten. Die Speicher dürfen nur in geschlossenen Heizungsanlagen eingesetzt werden
- Der Einbau eines Heizstabes ist möglich.



Kennlinien


Maximale Zapfrate in Abhängigkeit der Speicher- und Warmwasserzapftemperatur, Kaltwassertemperatur 10 °C

Zapfmenge bei einer Zapfrate von 15 l/min mit 45 °C in Abhängigkeit der Speichertemperatur bei teilgeladenem Speicher ohne Nachheizung, Kaltwassertemperatur 10 °C

Zapfmenge bei maximaler Zapfrate mit 45 °C in Abhängigkeit der Speichertemperatur bei teilgeladenem Speicher ohne Nachheizung, Kaltwassertemperatur 10 °C

Auslegung

Die Auslegung der Speicher erfolgt nach der Kollektorfläche und den Leistungsdaten.

Für die Größe der Kollektorfläche sind 80 l/m² +/- 25 % des Speichervolumens zu Grunde zu legen.

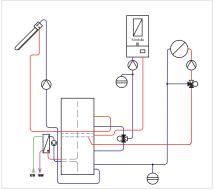
Sinnvolle Kollektorflächen sind somit:

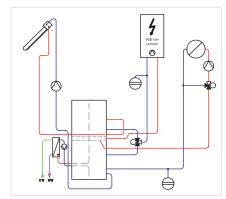
Aqua EXPRESSO 500 III mit $5-9 \text{ m}^2$ Kollektorfläche

Aqua EXPRESSO 650 III mit 6 – 11 m² Kollektorfläche

Aqua EXPRESSO 800 III mit 8 – 14 m² Kollektorfläche

Aqua EXPRESSO 1000 III mit 10 – 18 m² Kollektorfläche


Kleinere Flächen bringen keine vollständige Beladung, mit größeren Flächen erhöht sich zwar die solare Deckungsrate und die Heizungsanbindung wird noch wirksamer, ein zeitweiser Stillstand im Sommer ist dann aber mitunter nicht vermeidbar.


Die maximale Trinkwasserzapfmenge ist durch den Messbereich der eingebauten Sensoren auf 35 l/min begrenzt.

Frischwasserspeicher Aqua EXPRESSO HF

Kurzbeschreibung

- · Heizungspufferspeicher für größere Nachheizvolumenströme bei Wärmepumpen und Heizkesseln
- Zur geschichteten Speicherung von Wärme für Heizkreise und Trinkwarmwasser
- · Trinkwarmwasserbereitung mit Frischwasserstation

Leistungsmerkmale

- · Ideal für Kombination mit AquaSolar System
- Kombinierbar mit Wärmepumpen bis 15 kW
- Kombinierbar mit Heizkesseln bis 65 kW
- · Geeignet für Volumenströme bis 2.500 l/h
- Speichervolumen 815 l

- · Hervorragendes Schichtungsverhalten
- · Solarstation STAqua II direkt am Speicher montierbar
- Umschaltung Rücklauf Wärmeerzeuger durch 3-Wege-Umlenkventil-Set
- Hohe Warmwasser-Spitzenzapfleistung von bis zu 35 l/min.

Anschlüsse rechts

Aqua EXPRESSO 800 HF

Energieeffizienzklasse	С

Lieferumfang

Speicher auf Palette geschraubt, gegen Nässe geschützt • Dämmung montiert • Frischwasserstation separat im Karton • Bodenabstandshalter • Anschlussrosetten, Fühlerbefestigungen und Entlüfter im Beipack • 3-Wege-Umlenkventil-Set

Zubehör

Anschlussset EXPRESSO HF - STAqua II

Zur einfachen Verrohrung einer direkt am Aqua EXPRESSO HF installierten Solarstation STAqua II. **Lieferumfang:** Verrohrung Solarvorlauf 15 mm inkl. Wellschlauch und Dämmung • Verrohrung Solarrücklauf 15 mm inkl. Wellschlauch und Dämmung • Abblaseleitung

Wasserqualität

Falls die Trinkwasserqualität den Einsatz eines Standardwärmetauschers mit Kupferlot nicht erlaubt, kann alternativ und gegen Aufpreis ein beschichteter Plattenwärmetauscher bestellt werden.

Einsatz- und Funktionsbeschreibung

Der Frischwasserspeicher Aqua EXPRESSO 800 HF ist ein Heizungspufferspeicher mit an der Behälterdämmung befestigter Frischwasserstation zur Trinkwarmwasserbereitung. Er repräsentiert absolutes Spitzen-Know-how hinsichtlich der Minimierung von Wärmeverlusten und der Aufrechterhaltung der Temperaturschichtung. So wird eine optimale Nutzung der eingebrachten Wärme gewährleistet. Die leistungsstarke Frischwasserstation ermöglicht darüber hinaus einen hohen Trinkwarmwasserkomfort.

Der Frischwasserspeicher Aqua EXPRESSO 800 HF eignet sich ideal zum Einsatz regenerativer Energien, da die gespeicherte Energie gleichzeitig zur Warmwasserbereitung und zur Heizung genutzt werden kann. Durch Anwendung einer Rücklaufumschaltung mittels 3-Wege-Umschaltventil können auch Wärmeerzeuger mit geringem Temperaturhub und hohen Volumenströmen bis 2.500 l/min. zum Aufheizen des Warmwasser- und Heizungsbereichs eingesetzt werden. Durch eine innovative Schichteinrichtung wird ein Vermischen beider Bereiche weitestgehend vermieden. Für den Einsatz von Wärmepumpen bis 15 kW und Kesseln größerer Leistung bis 65 kW ist der Aqua EXPRESSO 800 HF daher prädestiniert.

Technische Daten

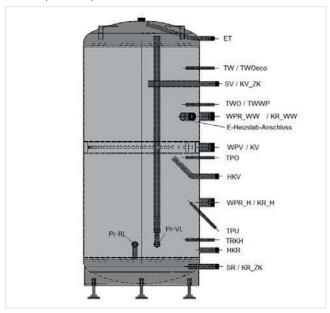
Aqua EXPRESSO 800 HF

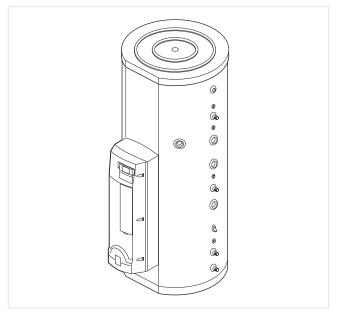
Speichergewicht	kg	118
Druck, max.	bar	3
Druck, max. Frischwasserstation	bar	10
Betriebstemperatur, max.	°C	95
Speicherinhalt	1	805
Bereitschaftsvolumen Solar	1	243
Kesselnachheizvolumen Vn	1	161
Nachheizvolumen bei E-Heizung	I	376
Warmhalteverlust (Sstby)	W	110

EnEV Kennwerte

Aqua EXPRESSO 800 HF

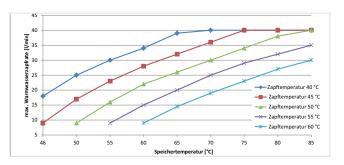
Speicher-Nenninhalt V	I	805
Bereitschaftswärmeverlust $q_{\scriptscriptstyle B,S}$	kWh/d	2,64
Bereitschaftsvolumen VS _{aux}	I	401
Solarvolumen VS	1	404



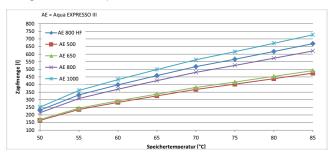

Maße			
		Aqua EXPR	RESSO 800 HF
Notwendige Montagehöhe	mm	2.	.040
Höhe mit Dämmung	mm	1.	.990
Höhe ohne Dämmung	mm	1.	910
Kippmaß	mm	2.	.067
Notwendige lichte Breite zum Transport	mm	3	300
Durchmesser mit Dämmung	mm	S	990
Durchmesser ohne Dämmung	mm	7	790
PU-Hartschaum-Dämmung	mm		95
Standringdurchmesser	mm	7	790
Boden Standringunterkante	mm		90
Anschlusshöhe			
Anschluss		Aqua EXPRESSO 800 HF	Anschlussart
Entlüfter ET	mm	1.770	G ½"
Solarvorlauf und Vorlauf Zusatzkessel, SV / KV_ZK	mm	1.470	G 1"
Elektrischer Heizstab Muffe E	mm	1.240	1½" IG
Wärmepumpen- und Kessel- Rücklauf Warmwasser, WPR_WW / KR_WW	mm	1.240	1½" IG
Wärmepumpen- und Kessel-Vorlauf, WPV / KV	mm	1.030	1½" IG
Heizungsvorlauf HKV	mm	807	G 1"
Wärmepumpen- und Kessel- Rücklauf Heizung, WPR_H / KR_H	mm	655	1½" IG
Heizungsrücklauf HKR	mm	330	G 1"
Solarrücklauf und Rücklauf Zusatzkessel, SR / KR_ZK	mm	220	G 1"
Fühleranschlusshöhe			
Fühler		Aqua EXPRESSO 800 HF	Fühleranschlussart
Warmwasserfühler TW / TWOeco	mm	1.570	Tauchhülse
Warmwasserfühler TWO / TWWP	mm	1.320	Tauchhülse
Pufferfühler oben TPO	mm	960	Tauchhülse
Pufferfühler unten TPU	mm	440	Tauchhülse
Pufferfühler Holzkessel TRKH	mm	400	Tauchhülse

Anschlüsse und Fühler

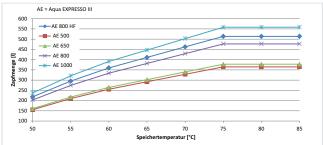
Kombispeicher Aqua EXPRESSO 800 HF


Einbauhinweise

- Beim Einsatz von Wärmepumpen als alleinigem Energieerzeuger muss beachtet werden, dass Temperaturen von 60 65 °C, bei welchen die Leistungsdaten von Kombispeichern angegeben werden, in der Regel nicht erreicht werden können
- Der Einsatz eines AquaSolar Systems als zusätzlichem regenerativem Energieerzeuger wird daher zum Erreichen hoher Temperaturen bzw. Leistungen empfohlen
- Die Speicher sind nicht korrosionsgeschützt, bei Korrosionsschäden ist die Gewährleistung ausgeschlossen
- Auch kleinste Leckagen in der Heizungsanlage sind unbedingt zu beheben
- Die Verwendung von Rohren und dgl. aus Materialien, die nicht sauerstoffdicht sind, ist unzulässig
- Die Richtlinien der DIN 4751, der DIN 4753 und der DIN 1988 sind einzuhalten. Die Speicher dürfen nur in geschlossenen Heizungsanlagen eingesetzt werden
- Der Einbau eines Heizstabes ist möglich.
- Bei Betrieb mit Wärmepumpe als alleinigem Wärmeerzeuger empfiehlt es sich, aufgrund der im Speicher erreichbaren geringeren Temperaturen, eine Beschränkung der Zapfrate auf 20 I/min mithilfe eines Durchflussbegrenzers vorzusehen 9 Eine Kombination mit Pufferspeichern PS2Plus ist vorerst noch nicht vorgesehen



Kennlinien


Maximale Zapfrate in Abhängigkeit der Speicher- und Warmwasserzapftemperatur, Kaltwassertemperatur 10 °C

Zapfmenge bei einer Zapfrate von 15 l/min mit 45 °C in Abhängigkeit der Speichertemperatur bei teilgeladenem Speicher ohne Nachheizung, Kaltwassertemperatur 10 °C

Zapfmenge bei maximaler Zapfrate mit 45 °C in Abhängigkeit der Speichertemperatur bei teilgeladenem Speicher ohne Nachheizung, Kaltwassertemperatur 10 °C

Auslegung

Die Auslegung der Speicher erfolgt nach der Kollektorfläche und den Leistungsdaten.

Für die Größe der Kollektorfläche sind 80 l/m² +/- 25 % des Speichervolumens zu Grunde zu legen.

Sinnvolle Kollektorbruttoflächen für den Aqua EXPRESSO 800 HF sind somit etwa 8 bis 14 m².

Die maximale Trinkwasserzapfmenge ist durch den Messbereich der eingebauten Sensoren auf 35 l/min begrenzt.

Trinkwasserqualität

Beständigkeitstabelle für Edelstahl AISI 316 sowie Lotmaterial Kupfer und Beschichtung zur Berücksichtigung bei Wasseranalysen

Wasserinhaltsstoff	Konzentration	Zeitspanne	Edelstahl	Kupferlot	Beschichtung
	(mg/l oder ppm)	Untersuchungszeit nach Probeentnahme	AISI 316 W 1.4401		
Hydrogencarbonat (HCO ₃ -)	<70	innerhalb 24 h	+	0	+
	70-300		+	+	+
	>300		+	0/+	+
Sulfate (SO ₄ ²⁻)	<70	kein Limit	+	+	+
	70-3000		+	0/-	+
	>300		0	-	+
HCO ₃ - / SO ₄ ² -	>1.0	kein Limit	+	+	+
	<1.0		+	0/-	+
Elektrische Leitfähigkeit	<10 µS/cm	kein Limit	+	0	+
	10-500 μS/cm		+	+	+
	>500 μS/cm		+	0	+
pH-Wert	<6.0	innerhalb 24 h	0	0	+
	6.0-7.5		0/+	0	+
	7.5-9.0		+	+	+
	>9.0	_	+	0	0
Ammoniak (NH ₄ +)	<2	innerhalb 24 h	+	+	+
	2-20		+	0	+
	>20		+	-	-
Chlorid (CI ⁻) bis 60 °C	<300	kein Limit	+	+	+
	>300		0	0/+	0
Freies Chlorgas (Cl ₂)	<1	innerhalb 5 h	+	+	+
	1-5		+	0	0
	>5		0/+	0/-	0
Schwefelwasserstoff (H ₂ S)	<0.05	kein Limit	+	+	+
	>0.05		+	0/-	0
Freie (aggressive) Kohlensäure (CO ₂)	<5	kein Limit	+	+	+
	5-20		+	0	+
	>20		+	-	+
Gesamthärte (°dH)	4.0-8.5	kein Limit	+	+	+
Nitrate (NO ₃)	<100	kein Limit	+	+	+
	>100		+	0	+
Eisen (Fe)	<0.2	kein Limit	+	+	+
	>0.2		+	0	+
Aluminium (Al)	<0.2	kein Limit	+	+	+
	>0.2		+	0	+
Mangan (Mn)	<0.1	kein Limit	+	+	+
	>0.1		+	0	+

Legende zur Beständigkeitstabelle

Bezeichnung	Erläuterung
+	unter normalen Umständen eine gute Beständigkeit
0	korrosionsgefährdet, besonders wenn mehrere Stoffe mit "0" vorliegen
-	nicht geeignet, hohe Korrosionsgefahr

Hinweis: Wenn die örtlichen Bedingungen die geforderte Trinkwasserqualität nicht erfüllen, können Sie einen Plattenwärmetauscher mit Beschichtung bestellen.

Technologie

Die Vorzüge der Speichersysteme Agua EXPRESSO III und HF

Frischwasserstation

Im Durchlauf erhitztes Wasser hat hygienisch eine besonders hohe Güte. Statt lange im Speicher stehendem Wasser wird immer Frischwasser gezapft. Darum sind Aqua EXPRESSO III und HF mit einer Frischwasserstation mit einer Zapfrate von 35 l/min ausgestattet. Diese ist platzsparend direkt am Speicher montiert.

Die Regelung SystaExpresso II sorgt für eine schnelle Trinkwassererwärmung mit individuell einstellbarem Sollwert und Zeitprogramm. Eine Zirkulationspumpe kann ebenso mit eigenem Sollwert bedarfsgerecht angesteuert werden.

Die Frischwasserregelung SystaExpresso II kann über SystaBus mit der Heizungsregelung SystaComfort / SystaComfort II kommunizieren. Temperaturen und Zeitprogramme sind dann bequem über die Fernbedienung des Heizungsreglers einstellbar. Ebenso wird die Nachheizung des Speichers mit minimal notwendiger Puffertemperatur übernommen.

Weitere Vorzüge sind:

- Alle Komponenten der Frischwassergruppe sind im eingebauten Zustand zugänglich.
- Absperrhähne auf der Speicher- und Trinkwasserseite ermöglichen Wartungsarbeiten ohne Entleeren des Speichers bzw. der Trinkwasserinstallation.
- Spülhähne auf der Trinkwasserseite erlauben die Reinigung des Wärmetauschers vor Ort.

Speicher

Die Schichtladeeinrichtung für Kessel- und Solarvorlauf sorgt stets für eine schichtende Beladung der Speicher mit Wärme bis Temperaturen von 95 °C

Bei Aqua EXPRESSO HF bleibt die Schichtung auch im Heizbetrieb über besonders lange Zeiträume erhalten. Ein Nachheizen des Warmwasserbereichs ist deshalb seltener erforderlich.

Hierdurch steht durch AquaSolar Systeme erwärmtes Pufferwasser bereits nach kurzer Beladezeit für die Trinkwassererwärmung zur Verfügung

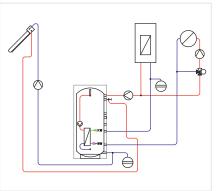
Der integrierte Heizungspuffer sorgt für eine besonders schonende und schadstoffarme Betriebsweise des Brenners

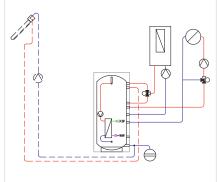
Die Fühlertauchhülsen garantieren eine exakte und rasche Temperaturmessung der Reglerfühler

Die Vergrößerung des Puffervolumens durch Reihenschaltung mit einem Pufferspeicher über ein Erweiterungsset ist gleichfalls möglich

Super-Wärmemanagement

Auf die Minimierung der Wärmeverluste wurde bei Aqua EXPRESSO III und HF großen Wert gelegt. Zum einen um die Nachheizenergie zur Aufrechterhaltung einer notwendigen Speichertemperatur für die Trinkwarmwasserbereitung gering zu halten. Zum andern um Zeiten mit wenig Sonneneinstrahlung ohne Nachheizung überbrücken zu können.


Die Vorzüge der Wärmedämmung von Aqua EXPRESSO III und HF sind:


- Energieeffizienzklasse B
- Sehr geringer Wärmeleitwert des Dämmstoffs und damit geringe Dämmstärke von nur 95 mm
- Schnelle Montage der Dämmung durch Ausführung aus zwei Halbschalen
- 100 mm Bodendämmung
- Skymantel als Speicherhülle
- · Halterung für die Frischwasserstation in die Wärmedämmung integriert.

Frischwasserspeicher PS2Plus FST 500 - 1250

Kurzbeschreibung

- Heizungspufferspeicher zur verlustarmen Speicherung von Wärme für Heizkreise und Trinkwarmwasser
- Trinkwarmwasserbereitung mit direkt am Speicher montierter Frischwasserstation FST-25

Leistungsmerkmale

- Sofort verfügbares, hygienisch erwärmtes Frischwasser dank Durchlaufprinzip
- Guter Warmwasserkomfort und gute Warmwasserspitzenzapfleistung von bis zu 25 l/min.
- Wärmedämmung aus PU-Hartschaumschalen mit Energieeffizienzklasse C
- Anschlussmuffe für optionalen E-Heizstab
- Zusätzliche Anschlüsse für effiziente Brennwertnutzung
- Vergrößerung Puffervolumen durch Kaskadierung mit Pufferspeicher PS2Plus
- Höhenverstellbare Füße (bei PS2Plus FST 500, 800 und 1000) minimieren Wärmeverluste über Bodenkontakt

PS2Plus FST 500 - 1250

	PS2Plus FST 500	PS2Plus FST 800	PS2Plus FST 1000	PS2Plus FST 1250
Energieeffizienzklasse	С	С	С	С

Lieferumfang

Speicher auf Palette geschraubt, gegen Nässe geschützt • Dämmung montiert • Frischwasserstation FST-25 separat im Karton • Anschlussset FST-25 separat im Karton • Bodenabstandshalter (nicht bei PS2Plus FST 1250) • Anschlussrosetten • Fühlerbefestigungen und Entlüfter im Beipack

Zubehör

3-Wege-ULV-Set PS2Plus

Zur Umschaltung des Wärmeerzeugervorlaufs von Heizung auf Warmwasserbereitung für eine effektive Brennwertnutzung. Komplett vormontierte Baugruppe zur direkten Montage am PS2Plus FST.

Lieferumfang: Dreiwege-Umlenkventil • Verrohrung • notwendige Montageteile

PS2Plus 500	PS2Plus 800	PS2Plus 1000	PS2Plus 1250

Reduziernippel 1 1/2" auf 1"

Zur Reduzierung der Speicheranschlüsse PS2Plus von Rp 1 1/2" auf G1".

Lieferumfang: Reduziernippel • Flachdichtung

Einsatz- und Funktionsbeschreibung

Der Frischwasserspeicher PS2Plus FST eignet sich ideal zum Einsatz regenerativer Energien wie Sonnenenergie oder Holzverbrennungsenergie im Einund Zweifamilienhaus. Die gespeicherte Energie kann zugleich zur Warmwasserbereitung und zur Heizung genutzt werden. Durch den integrierten Heizungspuffer wird die Zahl der Kesseleinschaltungen verringert, wodurch dieser besonders schonend und schadstoffarm betrieben werden kann. Die direkt am Speicherbehälter befestigte Frischwasserstation FST-25 erlaubt eine thermostatisch gesteuerte, komfortable und hygienische Trinkwarmwasserbereitung.

Technische Daten					
		PS2Plus FST 500	PS2Plus FST 800	PS2Plus FST 1000	PS2Plus FST 1250
Speichergewicht	kg	93	120	132	257
Speichergewicht inkl. Station	kg	108	135	147	272
Druck, max.	bar	3	3	3	3
Druck, max. Frischwasserstation	bar	10	10	10	10
Betriebstemperatur, max.	°C	95	95	95	95
Speicherinhalt	1	497	772	902	1264
Warmhalteverlust (Sstby)	W	104	129	141	154
Maße					
Notwendige Montagehöhe	mm	1.850	1.970	2.220	2180
Höhe mit Dämmung	mm	1.750	1.870	2.120	2080
Höhe ohne Dämmung	mm	1.685	1.805	2.055	2000
Kippmaß	mm	1.700	1.850	2.100	2080
Notwendige lichte Breite zum Transport	mm	660	800	800	960
Durchmesser mit Dämmung	mm	810	950	950	1150
Durchmesser ohne Dämmung	mm	650	790	790	950
PU-Hartschaum-Dämmung	mm	70	70	70	100
Standringdurchmesser	mm	550	690	690	850
Boden Standringunterkante	mm	40	40	40	0
EnEV Kennwerte					
		PS2Plus FST 500	PS2Plus FST 800	PS2Plus FST 1000	PS2Plus FST 1250
Speicher-Nenninhalt V	- 1	497	772	902	1264
Bereitschaftswärmeverlust $q_{\scriptscriptstyle B,S}$	kWh/d	2,50	3,10	3,38	3,70

Bereitschaftsvolumen VS

Solarvolumen VS_{sol}

299

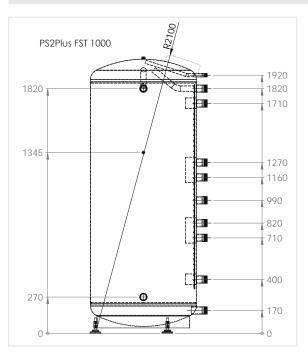
323

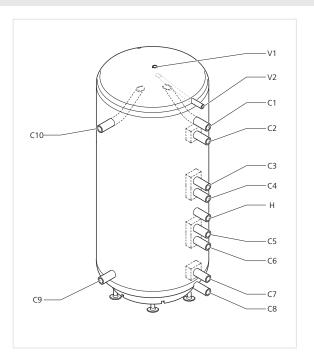
449

348

554

527

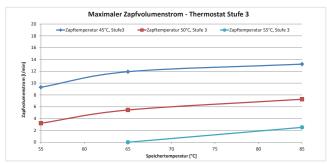

737


Anschlüsse						
Anschluss		PS2Plus FST 500	PS2Plus FST 800	PS2Plus FST 1000	PS2Plus FST 1250	Anschlussart FST
V1	mm	1.685	1.805	2.055	2000	Rp 1 1/4"
V2	mm/l	1.570/0	1.670/0	1.920/0	1815/0	Rp 1/2"
C1	mm/l	1.470/51	1.570/81	1.820/81	1715/142	Rp 1 ½"
C2	mm/l	1360/87	1.460/135	1.710/135	1605/219	Rp 1 ½"
C3	mm/l	1.020/198	1.070/323	1.270/348	1165/527	Rp 1 ½"
C4	mm/l	910/234	960/377	1.160/401	1055/604	Rp 1 ½"
Н	mm/l	740/290	790/459	990/483	845/751	Rp 1 ½"
C5	mm/l	570/346	620/541	820/565	635/898	Rp 1 ½"
C6	mm/l	460/381	510/594	710/619	525/975	Rp 1 ½"
C7	mm/l	350/417	400/648	400/769	445/1031	Rp 1 ½"
C8	mm/l	150/504	170/792	170/913	215/1192	Rp 1 ½"
C9	mm/l	270/444	270/711	270/832	315/1122	Rp 1 ½"
C10	mm/l	1.470/51	1.570/81	1.820/81	1615/212	Rp 1 ½"

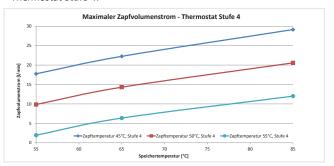
Fühleranschlusshöhe

Die Anschlussbelegung richtet sich nach dem Anlagenschema. Die Temperaturfühler müssen entsprechend dem Anlagenschema auf der richtigen Höhe unter der Fühlerklemmleiste am Pufferspeicher befestigt werden.

Maße



Kennlinien


Maximaler Zapfvolumenstrom in Abhängigkeit der Speicher- und Warmwasserzapftemperatur bei Kaltwassertemperatur 10°C und Thermostat Stufe 3:

Die Thermostat Stufe 3 sollte immer dann gewählt werden, wenn geringe Zapftemperaturen (45 °C) und Zapfvolumenströme (12 l/min) ausreichen. Aufgrund der geringeren Rücklauftemperaturen zum Speicher bietet sie energetische Vorteile und eine höhere Effizienz im Vergleich zu Stufe 4.

Innerhalb des Hauptarbeitsbereichs zwischen 10 und 20 I/min muss ausgehend von 15 I/min mit einer Temperaturabweichung um etwa 4 K bei einer Änderung des Volumenstroms um 5 I/min gerechnet werden.

Maximaler Zapfvolumenstrom in Abhängigkeit der Speicher- und Warmwasserzapftemperatur bei Kaltwassertemperatur 10 °C und Thermostat Stufe 4:

Die Thermostat Stufe 4 sollte immer dann gewählt werden, wenn höhere Zapftemperaturen (> 50 °C) und/oder Zapfvolumenströme (> 15 l/min) erforderlich sind, die mit Stufe 3 nicht erreicht werden können.

Innerhalb des Hauptarbeitsbereichs zwischen 10 und 20 I/min muss ausgehend von 15 I/min mit einer Temperaturabweichung um etwa 3 K bei einer Änderung des Volumenstroms um 5 I/min gerechnet werden.

Trinkwasserqualität

Um Korrosionsschäden am Plattenwärmetauscher zu vermeiden, sind folgende Werte des Trinkwassers zu beachten:

	Einheit	Kupferlot
Chlorid (CL ⁻)	mg/l	< 250 bei 50°C < 100 bei 75°C < 10 bei 90°C
Sulfat (SO ₄ ²⁻)	mg/l	< 100
Nitrat (NO ₃ -)	mg/l	< 100
pH-Wert		7,5 - 9,0
Elektrische Leitfähigkeit (bei 25 °C)	μS/cm	10 - 500
Hydrogencarbonat (HCO ₃ -)	mg/l	70 - 300
Verhältnis HCO ₃ -/SO ₄ ²⁻		Verhältnis > 1,0
Ammoniak (NH ₄ +)	mg/l	< 2
Freies Chlorgas	mg/l	< 0,5
Sulfit	mg/l	< 1
Schwefelwasserstoff (H ₂ S)	mg/l	< 0,05
Freie (aggressive) Kohlensäure (CO ₂)	mg/l	< 5
Eisen (Fe)	mg/l	< 0,2
Ammonium	mg/l	< 2
Mangan (Mn)	mg/l	< 0,05
Gesamthärte	°dH	4 - 14 (Verhältnis [Ca,Mg]/[HCO3]<0,5)
Gesamter organischer Kohlenstoff (TOC)	mg/l	< 30

Hinweis

Wenn die örtlichen Bedingungen die geforderte Trinkwasserqualität nicht erfüllen, können Sie einen Plattenwärmetauscher mit Edelstahllot bestellen.

Calcium carbonat-Massenkonzentration			Maßnahme	
mmol/l	mg/l	°dH	ivialsitatitie	
			Zapftemperatur ca. 60 °C	
< 1,5	< 150	< 8,4	Keine Enthärtungsanlage notwendig	
> 1,5 bis < 2,5	> 150 bis < 250	> 8,4	Enthärtungsanlage empfohlen	

Einbauhinweise

- Der Aufstellort des Speichers muss dauerhaft frostfrei sein
- Für den Einsatz von Wärmepumpen wird der Frischwasserspeicher Aqua EXPRESSO HF empfohlen
- Die Speicher PS2Plus FST sind nicht korrosionsgeschützt
- Bei Korrosionsschäden ist die Gewährleistung ausgeschlossen
- Auch kleinste Leckagen in der Heizungsanlage sind unbedingt zu beheben
- Die Verwendung von Rohren und dergleichen aus Materialien, die nicht sauerstoffdicht sind, ist unzulässig
- Die Richtlinien der DIN 4751, der DIN 4753 und der DIN 1988 sind einzuhalten
- Die Speicher dürfen nur in geschlossenen Heizungsanlagen eingesetzt werden
- · Beim Einsatz eines elektrischen Heizstabes muss darauf geachtet werden, dass dieser eine unbeheizte Länge von 100 mm hat

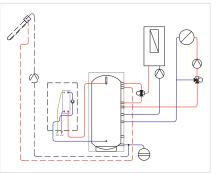
Auslegung

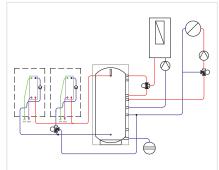
Die Auslegung der Speicher erfolgt nach der Kollektorfläche und den Leistungsdaten.

Für die Größe der Bruttokollektorfläche sind 80 l/m² +/- 25 % des Speichervolumens zu Grunde zu legen.

Sinnvolle Kollektorflächen sind somit:

- PS2Plus FST 500 mit 5 8 m² Kollektorfläche
- PS2Plus FST 800 mit 8 12 m² Kollektorfläche
- PS2Plus FST 1000 mit 9 16 m² Kollektorfläche
- PS2Plus FST 1250 mit 10 21 m² Kollektorfläche


Kleinere Flächen bringen keine vollständige Beladung, mit größeren Flächen erhöht sich zwar die solare Deckungsrate und die Heizungsanbindung wird noch wirksamer, ein zeitweiser Stillstand im Sommer ist dann aber in der Regel nicht vermeidbar.


Die maximale Trinkwasserzapfmenge ist durch die Frischwasserstation FST-25 auf etwa 25 l/min begrenzt.

Heizungspufferspeicher PS2Plus 500 - 1250

Kurzbeschreibung

- · Heizungspufferspeicher für Kombination mit unterschiedlichsten Wärmeerzeugern und Verbrauchern
- · Zur verlustarmen Speicherung von Wärme für Heizkreise und Trinkwarmwasser
- · Trinkwarmwasserbereitung mit wandhängender Frischwasserstation WFS-35 III oder direkt am Speicher montierbarer Frischwasserstation FST-25
- Bestens geeignet für effiziente Brennwertnutzung

Leistungsmerkmale

- Für Nachheizleistungen bis 150 kW
- 10 verschiedene Anschlüsse für diverse Wärmeerzeuger und Wärmeverbraucher
- Strömungsleiteinrichtungen zur Minimierung von Durchmischung im Speicher
- Wärmedämmung aus PU-Hartschaumschalen mit Energieeffizienzklasse C
- Anschlussmuffe für optionalen E-Heizstab
- · Vergrößerung Puffervolumen durch Kaskadierung möglich
 - Kombinierbar auch mit Aqua EXPRESSO III
- Höhenverstellbare Füße (bei PS2Plus 500, 800 und 1000) minimieren Wärmeverluste über Bodenkontakt

PS2Plus 500 - 1250

Energieeffizienzklasse C C C C		PS2Plus 500	PS2Plus 800	PS2Plus 1000	PS2Plus 1250
Energieeffizienzklasse C C C C					
	Energieeffizienzklasse	С	С	С	С

Lieferumfang

Speicher auf Palette geschraubt, gegen Nässe geschützt • Dämmung montiert • Bodenabstandshalter • Anschlussrosetten • Entlüfter

Zubehör

3-Wege-ULV-Set PS2Plus

Zur Umschaltung des Wärmeerzeugervorlaufs von Heizung auf Warmwasserbereitung für eine effektive Brennwertnutzung. Vor Ort zu montierende Baugruppe für direkte Montage am PS2Plus.

Lieferumfang: Dreiwege-Umlenkventil • Verrohrung • notwendige Montageteile

PS2Plus 500	PS2Plus 800	PS2Plus 1000	PS2Plus 1250

Reduziernippel 1 1/2" auf 1"

Zur Reduzierung der Speicheranschlüsse PS2Plus von Rp 1 1/2" auf G1".

Lieferumfang: Reduziernippel • Flachdichtung

PL-2224 V1.0 07/2019 Preisliste 2019/2020

© by Ritter Energie- und Umwelttechnik GmbH & Co. KG, Dettenhausen. Technische Änderungen vorbehalten.

Einsatz- und Funktionsbeschreibung

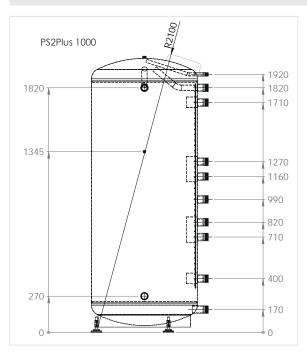
Die Heizungspufferspeicher PSP2Plus sind senkrecht stehende Speicherzellen aus Stahl, geeignet für Heizsysteme im Ein- und Mehrfamilienhaus mit AquaSolar Systemen als:

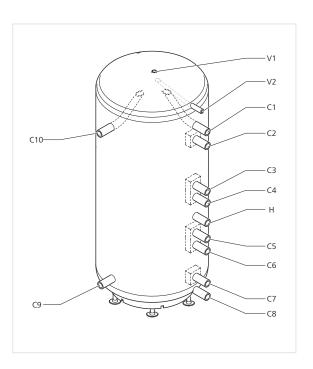
- Heizungspufferspeicher in Kombination mit wandhängender Frischwasserstation WFS-35 III oder am Speicher montierter Frischwasserstation FST-25, als Anlage für Trinkwarmwasser und Heizung
- Heizungspufferspeicher in Kombination mit Frischwasserkaskaden
- WFS-35 für Anlagen mit hohem Trinkwarmwasserbedarf
- Heizungspufferspeicher in Kombination mit Holz- und Pelletskesseln bzw. -öfen
- Wärmepuffer für Kessel, deren Heizleistung größer ist als der Wärmebedarf (Reduktion Kesseltakten)
- · Hydraulische Weiche

Technische Daten					
		PS2Plus 500	PS2Plus 800	PS2Plus 1000	PS2Plus 1250
Speichergewicht	kg	93	120	132	257
Druck, max.	bar	3	3	3	3
Druck, max. Frischwasserstation	bar	10	10	10	10
Betriebstemperatur, max.	°C	95	95	95	95
Speicherinhalt	1	497	772	902	1264
Warmhalteverlust (Sstby)	W	104	129	141	154
Maße					
Notwendige Montagehöhe	mm	1.850	1.970	2.220	2180
Höhe mit Dämmung	mm	1.750	1.870	2.120	2080
Höhe ohne Dämmung	mm	1.685	1.805	2.055	2000
Kippmaß	mm	1.700	1.850	2.100	2080
Notwendige lichte Breite zum Transport	mm	660	800	800	960
Durchmesser mit Dämmung	mm	810	950	950	1150
Durchmesser ohne Dämmung	mm	650	790	790	950
PU-Hartschaum-Dämmung	mm	70	70	70	100
Standringdurchmesser	mm	550	690	690	850
Boden Standringunterkante	mm	40	40	40	0

EnEV Kennwerte

		PS2Plus 500	PS2Plus 800	PS2Plus 1000	PS2Plus 1250
Speicher-Nenninhalt V	1	497	772	902	1264
Bereitschaftswärmeverlust q _{B,S}	kWh/d	2,50	3,10	3,38	3,70




Anschlüsse						
Anschluss		PS2Plus 500	PS2Plus 800	PS2Plus 1000	PS2Plus 1250	Anschlussart
V1	mm	1.685	1.805	2.055	2000	Rp 1 1/4"
V2	mm/l	1.570/0	1.670/0	1.920/0	1815/0	Rp 1/2"
C1	mm/l	1.470/51	1.570/81	1.820/81	1715/142	Rp 1 ½"
C2	mm/l	1360/87	1.460/135	1.710/135	1605/219	Rp 1 ½"
C3	mm/l	1.020/198	1.070/323	1.270/348	1165/527	Rp 1 ½"
C4	mm/l	910/234	960/377	1.160/401	1055/604	Rp 1 ½"
Н	mm/l	740/290	790/459	990/483	845/751	Rp 1 ½"
C5	mm/l	570/346	620/541	820/565	635/898	Rp 1 ½"
C6	mm/l	460/381	510/594	710/619	525/975	Rp 1 ½"
C7	mm/l	350/417	400/648	400/769	445/1031	Rp 1 ½"
C8	mm/l	150/504	170/792	170/913	215/1192	Rp 1 ½"
C9	mm/l	270/444	270/711	270/832	315/1122	Rp 1 ½"
C10	mm/l	1.470/51	1.570/81	1.820/81	1615/212	Rp 1 ½"

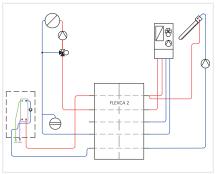
Die Anschlussbelegung richtet sich nach dem Anlagenschema. Die Temperaturfühler müssen entsprechend dem Anlagenschema auf der richtigen Höhe unter der Fühlerklemmleiste am Pufferspeicher befestigt werden.

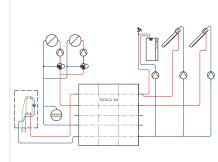
Maße

Fühleranschlusshöhe

Einbauhinweise

- Die Anschlussbelegung ergibt sich aus der Hydraulik der Anlage
- Die Fühlerbelegung ist sinnvoll dem Anlageschema anzupassen
- Wärmeerzeuger und Wärmeverbraucher sind an unterschiedlichen Anschlüssen anzuschließen
- Maximal zwei Wärmeerzeuger oder Verbraucher mit einem Anschluss verbinden
- Die Verbindung erst unmittelbar am Speicheranschluss realisieren
- Die Größe der maximal anschließbaren Kollektorfläche ist in Übereinstimmung mit den Vorgaben für AquaSolar Systeme festzulegen
- Der Solarvorlauf darf nicht am Anschluss C1 angeschlossen werden, dieser ist den Wärmeerzeugern- und Wärmeverbrauchern vorbehalten
- Der Anschluss V2 dient zur Entlüftung des Speichers und darf nur hierfür verwendet werden
- Der Anschluss V1 ist im Auslieferungszustand abgestopft und hat keine Funktion
- Bei Einsatz eines elektrischen Heizstabes muss darauf geachtet werden, dass dieser eine unbeheizte Länge von 100 mm hat


Hinweis


- Maximale Speichertemperatur 95 °C
- Kein Korrosionsschutz. Bei Korrosionsschäden ist die Gewährleistung ausgeschlossen
- Die Verwendung von Rohren und dergleichen aus Materialien, die nicht sauerstoffdicht sind, ist unzulässig
- Auch kleinste Leckagen in der Heizungsanlage müssen behoben werden
- Die Speicher dürfen nur in geschlossenen Heizungsanlagen eingesetzt werden
- Der Aufstellort des Speichers muss dauerhaft frostfrei sein
- · Sämtliche erforderliche Fühler gehören zum Lieferumfang der Regler

Modularer Pufferspeicher FLEXCA

Kurzbeschreibung

- · Modularer Pufferspeicher aus Stahl
- Anschluss unterschiedlichster Wärmeerzeuger und Wärmeverbraucher möglich

Leistungsmerkmale

- Extrem geringe Wärmeverluste bei Vakuumdämmung
- Große Solarenergiemengen über längere Zeit speicherbar
- Hohe solare Deckungsraten (> 50%) im Ein- und Zweifamilienhaus möglich
- · Clevere Alternative zu Großspeichern im Neubau
- · Einzigartig für Sanierung Gebäudebestand
- Durch modularen Aufbau Einbringung ohne Baumaßnahmen oder Vorortschweißung
- Ideale Kombinierbarkeit mit Holz- und Pelletskessel oder Gasbrennwertkessel
- Verschiedenste Technologien als Wärmequelle: Wärmepumpe, BHKW, Nahwärme, Photovoltaik
 - Speichervolumen von 2.760 bis über 5.460 l
- Hervorragende Platzausnutzung im Vergleich zu Pufferkaskaden
- Sehr gutes Schichtungsverhalten

Vakuumausführung

	FLEXCA 2	FLEXCA 3	FLEXCA 4
Standardausführung			
	FLEXCA 2	FLEXCA 3	FLEXCA 4

Hinweis

Bei Warmwasserspeichern mit einem Volumen von mehr als 2.000 l sind Energieeffizienzklassen nicht definiert. Deren Angabe ist daher unzulässig. Lieferzeit 10 Werktage nach Auftragseingang.

Lieferumfang

2 x Endmodul einzeln auf Palette geschraubt, gegen Nässe geschützt • Anzahl Zwischenmodule je nach gewähltem Speichertyp • Mantelschalen (Neopor) • Bodendämmplatten (EPS) • Vliesdämmung (Polyester) • 4 x Modulendplatte • 2 x Bodenschiene • 5 x Be- und Entladerohr • 8 x Spannstange • Kunststofffüße • Vakuumdämmpaneele (nicht bei Standardausführung) • Befestigungs- und Montagematerial

Technologie

Pufferspeicher FLEXCA

- 1. Endmodul
- 2. Zwischenmodul
- 3. Manteldämmung
- 4. Spannstangen
- 5. Bodenschienen
- 6. Be- und Entladerohre
- 7. Bodendämmung
- 8. Frontdämmung
- 9. Endplatten
- 10. Kunststofffüße
- 11. Entlüftungsstutzen
- 12. Vakuum-Dämmelemente

Abdichtung der Rohrdurchführungen

Zur dauerhaften Dichtung der Rohrdurchführungen wurde ein spezielles Dichtungssystem entwickelt und sorgfältig erprobt. Es dichtet die einzelnen Module an den Rohrdurchgängen über Flach- und Lamellendichtungen gegeneinander ab und beruht auf bewährten langlebigen Elastomeren in Verbindung mit Edelstahlhülsen. Die Lamellen dichten bereits ohne Druck beim Befüllen und Entleeren. Mit zunehmendem Druck nimmt die Dichtfunktion weiter zu. Das Dichtsystem wurde in einer Druckwechsel-Prüfeinrichtung am ITW der Universität Stuttgart mit 20.000 Zyklen zwischen 0 und 6 bar bei 20 °C und mit 15.000 Zyklen bei 90 – 60 °C erfolgreich erprobt.

Anschlusssets FLEXCA

- 1. Entlüfterset
- 2. Solar-Siphonset
- 3. Heizungs-Siphonset
- 4. Heizungs-Rücklaufset
- 5. Solar-Rücklaufset
- 6. Heizungs- und Solar Rücklaufset
- 7. Blindkappenset

Hinweis

- Pro Stutzen ist ein Anschlussset erforderlich, insgesamt also 10 Anschlusssets pro Speicher
- Darüber hinaus ist 1 Entlüfterset erforderlich
- Der Anschluss ist jeweils an beiden Speicherenden möglich

PL-2224 V1.0 07/2019 Preisliste 2019/2020

© by Ritter Energie- und Umwelttechnik GmbH & Co. KG, Dettenhausen. Technische Änderungen vorbehalten.

Einsatz- und Funktionsbeschreibung

Der Pufferspeicher FLEXCA ist ein modularer Heizungspufferspeicher. Er repräsentiert absolutes Spitzen-Know-how hinsichtlich der Minimierung von Wärmeverlusten und der Aufrechterhaltung der Temperaturschichtung. So wird eine optimale Nutzung der eingebrachten Wärme gewährleistet. Der Pufferspeicher FLEXCA eignet sich ideal zum Einsatz regenerativer Energien, da die gespeicherte Energie gleichzeitig zur Warmwasserbereitung (mit Hilfe einer Frischwasserstation WFS-35 III) und zur Heizung genutzt werden kann.

Der Pufferspeicher FLEXCA ist ideal kombinierbar mit Holz- und Holzpelletskesseln oder Gasbrennwertkesseln. Verschiedenste weitere Technologien können als Wärmequelle genutzt werden: Wärmepumpen, Blockheizkraftwerke, Nahwärmenetze und überschüssiger Strom aus Photovoltaik (Power to Heat).

Mit der Einbringung von Vakuum-Dämmelementen in die Speicherdämmung werden extrem geringe Wärmeverluste erreicht. So werden große Solarenergiemengen über längere Zeit speicherbar und ermöglichen im Ein- und Zweifamilienhaus solare Deckungsraten von bis zu 50 % und mehr. SonnenEnergieHäuser mit über 50% Autarkie (Unabhängigkeit von konventionellen Energieträgern) sind ab sofort keine Utopie mehr!

Durch seinen modularen Aufbau ist eine Einbringung des FLEXCA ins Gebäude ohne Baumaßnahmen oder Vorortschweißung möglich. Das Konzept ist damit einzigartig für die Sanierung im Gebäudebestand, kann aber auch als clevere Alternative zu Großspeichern im Neubau eingesetzt werden.

Mit Speichervolumina von 2.760 l bis über 5.460 l können vielfältigste Anwendungen sowohl im Wohnungsbau als auch im Gewerbe abgedeckt werden. Dabei benötigt der FLEXCA im Vergleich zu üblichen Pufferkaskaden erheblich weniger Aufstellfläche.

Kessel- und Heizkreise werden bei größeren Anlagen mit 2" Verrohrung (Siphonierung bauseits) direkt am Speicher angeschlossen. Hierdurch können, je nach Temperaturspreizung, Leistungen bis zu 200 kW übertragen werden.

Technische Daten

		FLEXCA 2	FLEXCA 3	FLEXCA 4
Speichergewicht, leer	kg	591	799	1.007
Speichergewicht, gefüllt	kg	3.351	4.909	6.467
Transportgewicht Zwischenmodul	kg	150	150	150
Transportgewicht Endmodul	kg	190	190	190
Druck, max.	bar	3	3	3
Betriebstemperatur, max.	°C	95	95	95
Speicherinhalt gesamt	1	2.760	4.110	5.460
Warmhalteverlust (Sstby) Vaku- umversion	W	136	168	201
Warmhalteverlust (Sstby) Standardversion	W	189	248	307

EnEV Kennwerte

		FLEXCA 2 Standard	FLEXCA 3 Standard	FLEXCA 4 Standard	FLEXCA 2 Vakuum	FLEXCA 3 Vakuum	FLEXCA 4 Vakuum
Speicher-Nenninhalt V	T	2760	4110	5460	2760	4110	5460
Bereitschaftswärmeverlust q	kWh/d	4,54	5,95	7,37	3,26	4,03	4,82

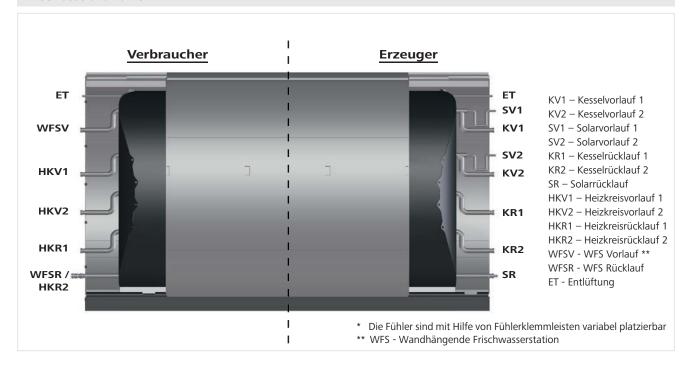
Maße				
		FLEXCA 2	FLEXCA 3	FLEXCA 4
Notwendige Montagehöhe	mm	2.170	2.170	2.170
Höhe mit Dämmung	mm	2.130	2.130	2.130
Höhe ohne Dämmung	mm	1.980	1.980	1.980
Breite mit Dämmung	mm	1.850	1.850	1.850
Breite ohne Dämmung	mm	1.565	1.565	1.565
Länge mit Dämmung	mm	1.905	2.535	3.165
Länge ohne Dämmung	mm	1.386	2.016	2.646
Kippmaß	mm	2.060	2.060	2.060
Notwendige lichte Breite zum Transport	mm	700	700	700
Frontdämmung (PET-Vlies)	mm	250	250	250
Manteldämmung (LEEPS + Spalt)	mm	160	160	160
Bodendämmung (EPS)	mm	50	50	50

Anschlusshöhe					
Anschluss		FLEXCA 2	FLEXCA 3	FLEXCA 4	Anschlussart*
Kesselvorlauf KV	mm	1.781	1.781	1.781	G 2''
Heizungsvorlauf HKV	mm	1.386	1.386	1.386	G 2''
Kesselrücklauf KR	mm	1.046	1.046	1.046	G 2''
Heizungsrücklauf HKR	mm	706	706	706	G 2''
Solarvorlauf SV	mm	1.914	1.914	1.914	G 2''
Solarrücklauf SR	mm	311	311	311	G 2''
Entlüfter ET	mm	1.863	1.863	1.863	G 1/2"

^{*} ohne FLEXCA-Anschlusssets

Fühleranschlusshöhe					
Fühler		FLEXCA 2	FLEXCA 3	FLEXCA 4	Anschlussart
Warmwasserfühler TW	mm	1.910	1.910	1.910	Klemmleiste
Warmwasserfühler TWO	mm	1.910	1.910	1.910	Klemmleiste
Pufferfühler oben TPO	mm	961	961	961	Klemmleiste
Pufferfühler unten TPU	mm	711	711	711	Klemmleiste
Pufferfühler Holzkessel TRKH	mm	310	310	310	Klemmleiste

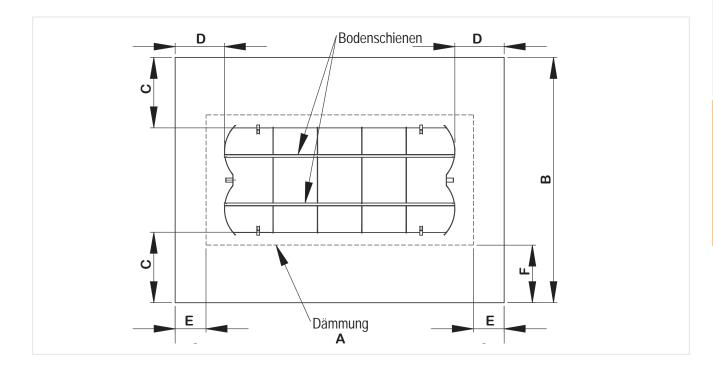
Anschlüsse und Fühler


\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1
#\-\ \{\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Einbauhinweise

- Der Einsatz eines AquaSolar Systems als zusätzlichem regenerativem Energieerzeuger wird daher zum Erreichen hoher Temperaturen bzw. Leistungen empfohlen
- · Die Speicher sind nicht korrosionsgeschützt, bei Korrosionsschäden ist die Gewährleistung ausgeschlossen
- Auch kleinste Leckagen in der Heizungsanlage sind unbedingt zu beheben
- Die Verwendung von Rohren und dgl. aus Materialien, die nicht sauerstoffdicht sind, ist unzulässig
- Die Richtlinien der DIN 4751, der DIN 4753 und der DIN 1988 sind einzuhalten. Die Speicher dürfen nur in geschlossenen Heizungsanlagen eingesetzt werden
- · Der direkte Einbau eines Heizstabes ist nicht möglich. Eine externe Station kann wie ein Kessel angeschlossen werden.
- Eine Kombination mit den Pufferspeichern PS2Plus ist gleichfalls möglich.

Anschlüsse und Fühler*



Planungshinweise

- · Die Speicher dürfen in Fahrzeugen nur aufrecht befördert werden. Die Einzelmodule können mit einem Hubwagen einfach transportiert werden.
- Vor der Montage des Speichers ist die statische Tragfähigkeit des Untergrundes zu pr
 üfen. Das Gewicht des bef
 üllten Speichers inkl. der
 eventuell angebauten Zubeh
 örteile darf die max. zul
 ässige Boden- bzw. Deckenlast nicht
 überschreiten! Die erforderliche Mindest-Druckbelastbarkeit des Bodenbelags betr
 ägt 3,5 kg/cm².
- Die Standfläche des Speichers muss eben sein und eine dauerhaft senkrechte Aufstellung des Speichers gewährleisten. Unebenheiten können durch mitgelieferte Bodenschienen und als Zubehör erhältliche Ausgleichsmasse ausgeglichen werden.
- · Der Speicher sollte in einer Wanne mit Wasserablauf aufgestellt werden oder austretendes Wasser über einen Bodenablauf abfließen können.
- Die Aufstellung muss in einem frostsicheren Raum erfolgen. Leitungen sind so kurz wie möglich und frostsicher auszuführen. Auch die Mündung der Abblaseleitung muss im frostsicheren Bereich liegen.
- Die Abstände zu Wänden, Decken, und unbeweglichen Hindernissen müssen so gewählt werden, dass eine problemlose Montage und Demontage, Inspektion und Wartung möglich ist.
- Die Wasserqualität der Behälterfüllung muss mindestens der VDI 2035 für Heizungswasser entsprechen. Bei Kombination mit einem AquaSolar System ist die Wasserqualität gemäß TH-1985 sicher zu stellen.
- Die maximal zulässige statische Anlagenhöhe beträgt 15 m, der maximal zulässige Betriebsdruck des Speichers 3 bar.
- Ein Volumenausgleichsgefäß zur Kompensation der Wärmeausdehnung des Heizungswassers ist unter Berücksichtigung der Solaranlage auszulegen und ein geeignetes Sicherheitsventil ist unabsperrbar zum Puffer FLEXCA vorzusehen.
- Die Anschlüsse 1 1/4" der Siphonsets werden durch die Siphonierung im Vergleich zu den Speicheranschlüssen 2" um 170 mm nach unten verlegt!
- Auf den Stirnseiten der Endmodule befinden sich Fühlerklemmleisten. Hier kann das beheizte Volumen durch die variable Montagehöhe der Fühler individuell eingestellt und Temperaturen gemessen werden
- Zur elektrischen Nachheizung des Pufferwassers, z. B. im Rahmen von "Power to Heat", wird eine externe Nachheizgruppe mit Elektroheizstab und vorzugsweise drehzahlgeregelter Pumpe verwendet. Heizstäbe müssen nach EN 60335 Teil 1 und 2 mit einem Schutz-Temperatur-Begrenzer ausgerüstet sein.
- Für die Warmwasserversorgung ist eine wandhängende Frischwasserstation WFS-35 III vorzusehen.
- Geltende Normen und Regeln der Technik sind zu befolgen!

Mindestraumgrößen				
		FLEXCA 2	FLEXCA 3	FLEXCA 4
A Mindest-Raumtiefe	mm	2.780	3.400	4.030
B Empfohlene Raumbreite	mm	3.500	3.500	3.500
C Empfohlener seitlicher Wandabstand (ohne Däm- mung)	mm	1.000	1.000	1.000
F Empfohlener seitlicher Wandabstand (mit Dämmung)	mm	830	830	830
D Mindest-Längs-Wandabstand (ohne Dämmung)	mm	700	700	700
E Mindest-Längs-Wandabstand (mit Dämmung)	mm	440	440	440
Mindest-Raumhöhe (mit Dämmung)	mm	2.170	2.170	2.170

Dimensionierung und Auslegung

Die Auslegung der Speicher erfolgt je nach Anwendungsfall unterschiedlich:

Hohe Solare Deckungsrate im Ein- und Zweifamilienhaus:

Die Dimensionierung von Speicher und Kollektorfläche erfolgt abhängig von der gewünschten Solaren Deckungsrate, welche durch Simulation mit den einschlägigen Computerprogrammen abgeschätzt werden kann. Dabei sollte das Verhältnis von Speichervolumen zu Bruttokollektorfläche etwa 100 l/m² +/- 25 % betragen:

Ein- und Zweifamilienhaus		FLEXCA 2	FLEXCA 3	FLEXCA 4
Speicherinhalt gesamt	1	2.760	4.110	5.460
Empfohlene Bruttokollektorfläche	m²	20 bis 34 m ²	30 bis 50 m ²	45 bis 68 m ²
Anzahl Kollektorfelder	-	2	2 bis 4	3 bis 4
Anzahl Solarstationen STAqua II	-	1	1 bis 2	2

Der Anschluss von Wärmerzeugern und Verbrauchern erfolgt mit Hilfe der FLEXCA-Zubehörsets.

Einsatz in Wohngebäude und Gewerbe:

Die Dimensionierung des Pufferspeichers FLEXCA erfolgt in Abhängigkeit der geplanten Anwendung, der vorhandenen Randbedingungen, der zur Verfügung stehenden Kesselleistung, der vorhandenen räumlichen Gegebenheiten und des erforderlichen Speichervermögens. Kommen CPC Vakuum-Röhrenkollektoren zum Einsatz, sollte das Verhältnis von Speichervolumen zu Bruttokollektorfläche gleichfalls etwa 100 l/m² +/- 25 % betragen.

Wohngebäude und Gewerbe		FLEXCA 2	FLEXCA 3	FLEXCA 4
Speicherinhalt gesamt	I	2.760	4.110	5.460
Empfohlene Bruttokollektorfläche	m²	20 bis 34 m ²	30 bis 50 m ²	45 bis 68 m²
Anzahl Kollektorfelder	-	2	2 bis 4	3 bis 4
Anzahl Solarstationen STAqua II	-	1	1 bis 2	2

Der Anschluss von Wärmerzeugern und Verbrauchern erfolgt mit FLEXCA-Zubehörsets gegebenenfalls ergänzt durch bauseitige Komponenten.

Planungsempfehlung Kessel-Anschlussleistung

Die mögliche Kesselanschlussleistung bei Pufferspeichern FLEXCA hängt von der Temperaturdifferenz zwischen Kesselvor- und Kesselrücklauf sowie von der Dimension bzw. Ausführung der Anschlüsse ab.

Die standardmäßige Ausführung der Anschlüsse in 5/4" mit den Zubehör-Sets von Paradigma erlaubt Kesselleistungen bis 140 kW. Der bauseitige Anschluss mit einer Verrohrung 2" ermöglicht den Anschluss von Kesseln bis 300 kW Leistung.

Nähere Informationen finden sich in nachfolgender Tabelle:

Temperaturdifferenz Vorlauf-Rücklauf	Maximale Anschlussleistung 5/4"	Maximale Anschlussleistung 2"
10 K	70 kW	150 kW
15 K	105 kW	225 kW
20 K	140 kW	300 kW
Anschluss Heizkessel	Mit Zubehör-Sets und Kugelhähnen 5/4"	Direkt an Be- und Entladerohren 2" des Speichers
Siphonierung	integriert	bauseits
Begrenzender Faktor	Strömungsgeschwindigkeit bzw. Geräuschentwicklung an den Anschluss-Sets	Volumenstrom 13 m³/h (217 l/min.) durch den Speicher. Druckverlust Speicher ca. 160 mbar

